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We provide in this appendix derivations of expressions discussed in the main text, as well as

proofs of arguments that are not shown there. The appendix is organized according to sections in

the body of the paper in order to make it easy for the reader to find these items.

Section 2

Section 2.4

We begin by deriving expected profits ⇧j := ⇧j (µ), j 2 {f, h, b}, where µ := (µh, µf , µb). To

this end, recall the profit function (7),

⇡J,K (!) =
s [p(!)/A]

� [p(!)/A]
(P J)1�",

for J 2 {H, J,B} the state of the world and K 2 {H,F} the country from which the input is

supplied from. Given a state J , all firms sourcing from the same location choose the same prices.

In states H and F , only sourcing from one country is feasible, and we use ⇡J := ⇡J,J to denote the

realized profits in state J for firms that have an active supply chain in country J .

First consider a state J 2 {H,F} in which supply chains from one country are disrupted but

not so in the other country. In such a state, only firms that adopted a strategy of investing only in

country J and those that invested in both countries might be able to produce, provided that their

bilateral relations do not su↵er an idiosyncratic shock. Each such firm pays qJ for its input. In

this case, the market clearing condition (4) becomes

1 ⌘ nJ (µ) s[zJ(µ)], J 2 {H,F} , (20)

where

nJ (µ) = (µj + µb) ⇢

and zJ = pJ/AJ . These equations yield relative prices zJ in state J 2 {H,F} as functions of µ,

denoted zJ(µ).
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Next note that, in state J 2 {H,F}, the price index (5) can be expressed as

logP J = CP + log
pJ

zJ
� nJ

Z
z̄

zJ

s (⇣)

⇣
d⇣,

where from (6),

pJ =
�
�
zJ
�

� (zJ)� 1
qJ .

Using the function zJ (µ) and (20), we can express the price index P J as a function of zJ (µ),

logP J
⇥
zJ (µ)

⇤
:= CP+log

�
⇥
zJ (µ)

⇤

� [zJ (µ)]� 1
+log

qJ
zJ (µ)

� 1

s [zJ (µ)]

Z
z̄

zJ (µ)

s (⇣)

⇣
d⇣, J 2 {H,F} . (21)

This function, together with (7) and zJ (µ) , can be used to compute the profits of an active firm

in state J , which are

⇡J
⇥
zJ (µ)

⇤
:=

s
⇥
zJ (µ)

⇤

� [zJ (µ)]
P J
⇥
zJ (µ)

⇤1�"
, J 2 {H,F}. (22)

The functions P J (z) and ⇡J (z), defined in (21) and (22), are decreasing in z. To see this,

di↵erentiate logP J (z) with respect to z, which yields29

1

P J (z)

dP J (z)

dz
= � �0 (z)

� (z) [� (z)� 1]
+

s0 (z)

s (z)2

Z
z̄

z

s (⇣)

⇣
d⇣ < 0, J 2 {H,F} . (23)

Next, di↵erentiate log ⇡J (z) with respect to z, which gives

1

⇡J (z)

d⇡J (z)

dz
= ��0 (z)

� (z)

� (z)� "

� (z)� 1
+

s0 (z)

s (z)


1� "� 1

s (z)

Z
z̄

z

s (⇣)

⇣
d⇣

�
, J 2 {H,F} . (24)

Equation (3) in the main text implies (see Matsuyama and Ushchev (2020)):

s (⇣)

⇣
=

s0 (⇣)

1� � (⇣)
.

Therefore

Z
z̄

z

s (⇣)

⇣
d⇣ =

Z
z̄

zJ

�s0 (⇣)

� (⇣)� 1
d⇣ <

Z
z̄

zJ

�s0 (⇣)

� (zJ)� 1
d⇣ =

s (z)� s (z̄)

� (z)� 1
=

s (z)

� (z)� 1
. (25)

Using this inequality, we obtain

1

⇡J (z)

d⇡J (z)

dz
<


s0 (z)

s (z)
� �0 (z)

� (z)

�
� (z)� "

� (z)� 1
< 0, J 2 {H,F} ,

which we summarize in the following

29Recall that � (z) > " at our equilibrium points while �
0 (z) � 0 and s

0 (z) < 0.
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Lemma 1 The functions P J (z) and ⇡J (z) are declining in z for J 2 {H,F}.

In state B, in which supply chains from both countries are viable, diversified firms prefer to

source from the cheaper country F (recall that qF < qH), if they can. In this case, the number

of firms that source from F and pay qF for their inputs is nB,F (µ) = (µf + µb) ⇢. The number

of firms that source from country H and pay qH for inputs is nB,H (µ) = µh⇢ + µb⇢ (1� ⇢). The

market clearing condition (4) implies

1 ⌘ nB,H (µ) s[zB,H(µ)] + nB,F (µ)s[zB,F (µ)] , (26)

which is equation (14) in the main text. The pricing equation (6) implies

zB,H(µ)

zB,F (µ)
⌘
⇢

�[zB,H(µ)]

�[zB,H(µ)]� 1

�.⇢ �[zB,F (µ)]

�[zB,F (µ)]� 1

�
qH
qF

. (27)

From here, we obtain solutions to the relative prices zB,i, i = H,F , as functions of the vector µ,

zB,i (µ), i 2 {H,F}. Furthermore, equation (27) implies that prices of the goods produced with

inputs from country F are strictly cheaper than goods produced with inputs from country H in

state B. To see this, suppose not, such that pB,H  pB,F and therefore zB,H  zB,F . Equation

(27) then returns

pB,H =

✓
�(zB,H)

�(zB,H)� 1

◆
qH 

✓
�(zB,F )

�(zB,F )� 1

◆
qF = pB,F <

✓
�(zB,F )

�(zB,F )� 1

◆
qH .

However, the mark-up function z ! �(z)/(�(z)�1) is (weakly) increasing in p under Assumption 2,

thus contradicting the strict inequality above. It follows that, for any vector µ, we have zB,H(µ) >

zB,F (µ).

To derive the price index (5) for state B, first note that the pricing equation (6) implies

1

AB(µ)
=

zB,i(µ)
�
�[zB,i(µ)]� 1

 

qi�[zB,i(µ)]
, i 2 {H,F}.

Using (14), we can write

logAB(µ) =
X

i=H,F

nB,i(µ)s
⇥
zB,i (µ)

⇤
log

(
qi

zB,i (µ)

�
⇥
zB,i (µ)

⇤

� [zB,i (µ)]� 1

)
.

Now, the price index (5) can be expressed as

logPB(µ) :=
X

i=H,F

nB,i (µ) s
⇥
zB,i(µ)

⇤
logPB

⇥
zB,i(µ)

⇤
, (28)

where the function logP J (z) is defined in (21). Using this result for the price index, profits of a
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firm that sources from country J in state B amount to

⇡B,i(µ) :=
s
⇥
zB,i(µ)

⇤

� [zB,i(µ)]
PB(µ)1�", i 2 {H,F}. (29)

Now consider expected profits from strategy j, ⇧j , j 2 {h, f, b}. For a firm that invests in a

single supply chain, expected profits are

⇧h = �H⇡H⇢+ �B⇡B,H⇢� k,

⇧f = �F⇡F⇢+ �B⇡B,F⇢� k,

where �J is the probability that only supply chains from country J will be available, J 2 {H,F}, and
�B is the probability that supply chains from both countries will be available. These probabilities

are �H = �H (1� �F ), �F = �F (1� �H) , and �B = �F�H . Using the profit functions (22) and

(29), this yields

⇧h = ⇧h(µ) := �H
s
⇥
zH (µ)

⇤

� [zH (µ)]
PH

⇥
zH (µ)

⇤1�"

⇢+ �B
s
⇥
zB,H(µ)

⇤

� [zB,H(µ)]
PB (µ)1�" ⇢� k, (30)

⇧f = ⇧f (µ) := �F
s
⇥
zF (µ)

⇤

� [zF (µ)]
PF

⇥
zF (µ)

⇤1�"

⇢+ �B
s
⇥
zB,F (µ)

⇤

� [zB,F (µ)]
PB (µ, q)1�" ⇢� k. (31)

For a firm that invests in supply chains in both countries, expected profits are

⇧b =
X

J=H,F

�J⇡J⇢+ �B
⇥
⇡B,F⇢+ ⇡B,H (1� ⇢) ⇢

⇤
� 2k.

A firm that adopts this strategy expects profits ⇡F if the supply chains survive only in country F ,

provided it does not su↵er an idiosyncratic disruption there. Similarly, it expects profits ⇡H if the

supply chains survive only in country H, provided it does not su↵er an idiosyncratic disruption

there. In case supply chains in both countries are viable, the firm expects profits ⇡B,F if its bilateral

relation survives in country F and profits ⇡B,H if its bilateral relation in F does not survive but

that in H does survive. Using (22) and (29), this yields

⇧b = ⇧b(µ) :=
X

J=H,F

�J
s
⇥
zJ(µ)

⇤

� [zJ(µ)]
P J
⇥
zJ (µ)

⇤1�"
⇢

+ �B
(
s
⇥
zB,F (µ)

⇤

� [zB,F (µ)]
+

s
⇥
zB,H(µ)

⇤

� [zB,H(µ)]
(1� ⇢)

)
PB (µ)1�" ⇢� 2k. (32)

Using these functions and P J(µ) := P J
⇥
zJ (µ)

⇤
, J 2 {H,F}, we obtain the welfare function (11)

in the main text.
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Section 2.6

Armed with these expressions, we now prove Figure 1. Suppose that qF % qH and �F < �H .

In this partially asymmetric world, given an aggregate state J , the country from which the input

is supplied is irrelevant. In particular, in state B, equation (27) dictates that zB,F ! zB,H . As

in state H and F , we can then use the notation zB(µ) := zB,H(µ) = zB,F (µ). Consequently,

only the total number of products available in state B matters, nB(µ) := nB,F (µ) + nB,H(µ) =

⇢(1 + (1� ⇢)(1� µh � µf )), and the market clearing condition (26) rewrites 1 = nB(µ)s[zB(µ)].

Inasmuch as country H is safer than country F , relatively more firms want to settle a single

supply chain in H than in F . To see this, suppose the contrary: firms invest relatively more in the

risky country, µf > 0 and µf � µh. From the market clearing conditions, we then have

s[zF (µµµ)] =
1

⇢(µf + µb)
 1

⇢(µh + µb)
= s[zH(µµµ)].

Since s0(z) < 0, it must be that zH(µµµ)  zF (µµµ). But ⇡0(z) < 0, so that �F⇡[zF (µµµ))  �F⇡[zH(µµµ)] <

�H⇡[zH(µµµ)]. However, this in turn implies that the expected profits of the foreign strategy are lower,

⇧f < ⇧h, and therefore µf = 0, a contradiction. Hence, in equilibrium, it must either be that no

firms invest in the risky country, µf = 0, or if some firms do, relatively more firms need to invest

in the safe country, µf > 0 and µh > µf . Accordingly, it must also be that the expected profits of

the safer strategy are (weakly) higher than the expected profits of the less safe strategy, ⇧h � ⇧f .

Given that the expected profits of the home supply chain are weakly higher than those with a

supplier in the foreign country, firms’ investments are dictated by two comparisons: home versus

foreign supply chains, ⇧h(µh, µf , µb) � ⇧f (µh, µf , µb), and single supply chain at home versus

diversification, ⇧h(µh, µf , µb)�⇧b(µh, µf , µb).30 Using the expressions for expected profits (30:32),

these two optimality conditions respectively read

⇧h(µh, µf , µb) � ⇧f (µh, µf , µb) () �H⇡[zH(µh, µf , µb)] � �F⇡[zF (µh, µf , µb)],

and

⇧b(µh, µf , µb) � ⇧h(µh, µf , µb) () �F⇡[zF (µh, µf , µb)] + �B⇢(1� ⇢)⇡[zB(µh, µf , µb)] � k.

In addition, profits must be positive, ⇧j(µh, µf , µb) � 0 for j 2 {h, f, b}. These three conditions

together dictate the features of the equilibrium.

Figure 1 depicts the fraction of firms choosing each strategy as a function of k when profits are

unbounded; that is when limz!0+ ⇡(z) = 1. We make this assumption throughout the proof, and

come back to the case of bounded profit at the end of the section.

30Without ⇧h � ⇧f , we would also need to compare ⇧f �⇧b.
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Existence of k1 For k ! 0+, investing in resilience is clearly the most profitable option, ⇧b >

⇧h > ⇧f , where the second inequality follows from �H⇡[zH(0, 0, 1)] > �F⇡[zF (0, 0, 1)]. Hence, for

low k, µh = 0 = µf and µb = 1. As the fixed cost increases, the gap between ⇧h(0, 0, 1)�⇧b(0, 0, 1)

shrinks to the point where the two strategies yield the same expected profits. This occurs at k1,

defined by

k1 := �F⇢⇡[zF (0, 0, 1)] + �B⇢(1� ⇢)⇡[zB(0, 0, 1)].

Furthermore, at k1, excepted profits of strategy h reads

⇧h = �B⇢2⇡B[zB(0, 0, 1)] + ⇢
�
�H⇡[zH(0, 0, 1)]� �F⇡[zF (0, 0, 1)]

�
> 0,

where the inequality follows from zH(0, 0, 1) = zF (0, 0, 1) and �H > �F . Hence, ⇧b > 0 for all

k 2 [0, k1].

Existence of k2 At k = k1, we thus have ⇧b(0, 0, 1) = ⇧h(0, 0, 1) > ⇧f (0, 0, 1). For k 2 B+(k1),

⇧b(0, 0, 1) < ⇧h(0, 0, 1), such that (0, 0, 1) cannot be an equilibrium.31 Instead, it must be that

µh > 0 and µb = 1 � µh > 0. When that is the case, firms must be indi↵erent between the two

strategies and must prefer them to the o↵shoring strategy,

k = �F⇢⇡[zF (µh, 0, 1� µh)] + �B⇢(1� ⇢)⇡[zB(µh, 0, 1� µh)],

0 > �F⇡[zF (µh, 0, 1� µh)]� �H⇡[zH(µh, 0, 1� µb)],

µf = 0, µb = 1� µh > 0.

First, note that the first and second conditions imply that expected profits are positive. For

instance, the expected profits of strategy h is given by

⇧h = �B⇢2⇡[zB(µh, 0, 1� µh)] + ⇢
�
�H⇡[zH(µh, 0, 1� µh)]� �F⇢⇡[zF (µh, 0, 1� µh)]

 
> 0,

where the first equality follows from the first condition and the inequality follows from the second

condition. Second, when µh > 0 and µb = 1 � µh > 0, the market clearing conditions in states

F , H and B read s[zF (µµµ)]⇢(1 � µh) = 1, s[zH(µµµ)]⇢ = 1 and s[zB(µµµ)]⇢[1 + (1 � µh)(1 � ⇢)] = 1

respectively. Hence, ⇡[zF (µµµ)] and ⇡[zB(µµµ)] are increasing in µh, while ⇡[zH(µµµ)] is independent of

µµµ. This implies that µh is increasing in k for k 2 B+(k1). Finally, unbounded profits imply that

there exists a µ̄2
h
such that the second condition cannot hold for any µh > µ̄2

h
.32 This limiting µh

is defined by

�H⇡(z̄) = �F⇡[zF (µ̄2
h
, 0, 1� µ̄2

h
)].

31The correspondence B
+ : R 7! 2R is defined as B+(x) = [x, x+ #) for # > 0 small.

32Otherwise, the equality would hold for µh % 1 () z
F & 0, at which point ⇡(zF ) ! 1 > ⇡[zH(1, 0, 0)], a

contradiction.
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Accordingly, we define the second fixed cost threshold k2 as

k2 = �F⇢⇡[zF (µ̄2
h
, 0, 1� µ̄2

h
)] + �B⇢(1� ⇢)⇡[zB(µ̄2

h
, 0, 1� µ̄2

h
)].

For all k 2 B+(k2), we would have µh > µ̄2
h
, which in turn would imply ⇧f > ⇧h so that (µh, 0, 1�

µh) cannot be an equilibrium allocation.

Existence of k3 For k 2 B+(k2), the equilibrium must be of the type µh > 0, µf > 0 and

µb = 1� µh � µf > 0. When that is the case, it must be that ⇧b = ⇧h = ⇧f , or

k = �F⇢⇡[zF (µµµ)] + �B⇢(1� ⇢)⇡[zB(µµµ)],

0 = �H [zH(µµµ)]� �F⇡[zF (µµµ)],

1 � µh + µf (µh).

As before, note that the first and second conditions together imply that the expected profits of the

three strategies are positive. The market clearing condition in each state are s[zF (µµµ)]⇢(1�µh) = 1,

s[zH(µµµ)]⇢(1� µf ) = 1, and s[zB(µµµ)]⇢[1 + (1� ⇢)(1� µf � µh)] = 1. In particular, zF , zH and zB

are only functions of µh, µf and µh + µf respectively. Accordingly, let z̃(µ) and z̃B(µ) be defined

respectively by s[z̃(µ)]⇢(1�µ) = 1 and s[z̃B(µ)]⇢(1+ (1�⇢)(1�µ)) = 1. The first two equilibrium

conditions then rewrite

k = �F⇢⇡[z̃(µh)] + �B⇢(1� ⇢)⇡[z̃B(µh + µf )],

0 = �H⇡[z̃(µf )]� �F⇡[z̃(µh)].

Both z̃ and z̃B are decreasing functions, such that d⇡[z̃(µ)]/dµ > 0. The second condition thus

implies that µf is increasing in µh, and the first condition implies that µh is increasing in k for

k 2 B+(k2). Finally, unbounded profits imply that there always exists an upper bound µ̄3
h
such

that

�F⇡[z̃(µ̄3
h
)] = �H⇡[z̃(1� µ̄3

h
)].

The first and third condition together then imply that there exists a fixed cost threshold k3 such

that (µ̄3
h
, 1 � µ̄3

h
, 0) is the equilibrium allocation, and ⇧b(µ̄3

h
, 1 � µ̄3

h
, 0) < ⇧h(µ̄3

h
, 1 � µ̄3

h
, 0) =

⇧f (µ̄3
h
, 1� µ̄3

h
, 0) for k 2 B+(k3). This cuto↵ is defined by

k3 = �F⇢⇡[z̃(µ̄3
h
)] + �B⇢(1� ⇢)⇡[z̃B(1)].

Existence of k4 At k3, we have already argued that ⇧h(µ̄3
h
, 1 � µ̄3

h
, 0) = ⇧f (µ̄3

h
, 1 � µ̄3

h
, 0) > 0.

Since ⇧h(µ̄3
h
, 1� µ̄3

h
, 0) is monotonically decreasing in k, there exists a k4 > k3 such that profits of
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the h and f strategy are nil,

k4 = �F⇢⇡[z̃(µ̄3
h
)] + �B⇢⇡[z̃B(1)].

Beyond k4 For k 2 B+(k4), it clearly cannot be that (µ̄3
h
, 1 � µ̄3

h
, 0) is an equilibrium. We first

show that, locally, it must be that µh+µf < 1 and µb = 0. For this to be an equilibrium, it clearly

cannot be that ⇧h > 0, for otherwise other firms would enter till either ⇧h = 0 or µh + µf = 1.

A symmetric argument exists for ⇧f . Hence, for k 2 B+(k4), it must be that ⇧h = ⇧f = 0 > ⇧b.

Furthermore, when µh + µf < 1 and µb = 0, the market clearing conditions in state H, F and B

respectively read

s[zH(µµµ)]⇢µh = 1, s[zF (µµµ)]⇢µf = 1, s[zB(µµµ)](µf + µh)⇢ = 1.

Let ⇣(µ) denote the (increasing) function that solves s[⇣(µ)]⇢µ = 1. The equilibrium conditions

⇧h = ⇧f = 0 can then be written as

�H⇢⇡[⇣(µh)] + �B⇢⇡[⇣(µf + µh)] = k,

�F⇡[⇣(µf )]� �H⇡[⇣(µh)] = 0,

µf + µh < 1.

From the second condition, µf is increasing in µh. From the first condition, the right hand side is

increasing in k and the left-hand is decreasing in µh. Hence, µh is decreasing in k for k 2 B+(k4).

Finally, when profits are unbounded, as k becomes infinitely large, the left-hand side of the first

condition has to be large as well, which requires µh & 0. From the second condition, µh & 0

implies µf & 0. Hence, the two conditions above hold jointly for any k > k4, which is depicted in

Figure 1.

The proof of Figure 1 holds when profits are unbounded, limz&0 ⇡(z) = 1. Yet, with HSA

preferences and " > 1, profits may be bounded even as prices tend to zero. When that is the

case, there may exist two further thresholds k5 and k6 such that, for k between k5 and k6, we have

µh > 0 and µf = 0, and for k > k6, no firms enter, µf = µh = µb = 0. Furthermore, when profits

are bounded, the interval (k2, k3) may be empty. However, k2 < k3 is guaranteed if the di↵erence

between �F and �H is not too large, or alternatively, if " � 1 is small – in which case profits are

necessarily unbounded. Numerically, in Section 5, we do find that k2 < k3 for relatively large risk

premium and elasticity of substitution, namely �F /�H = 0.7 and " = 1.7.

Section 3

We begin by deriving the social welfare function in the presence of consumption subsidies that

equate consumer prices to marginal costs according to where inputs are sourced.
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First, consider the pricing problem facing a producer that pays q per unit for its inputs that

faces an aggregator A and that recognizes that consumers will pay only a fraction ⌫ of the sticker

price in view of the consumption subsidy at rate 1�⌫. Then the consumer price of the final product

is ⌫p, where p is the producer price. As noted, the government sets the subsidy so that ⌫p = q,

and firms take the subsidy rate as given. They choose the sticker price as

p = argmax
p̆

P 1�"s

✓
⌫p̆

A

◆
(⌫p̆)�1 (p̆� q) .

The solution to this problem yields

p =
� (p/A)

� (p/A)� 1
q.

Therefore, the optimal subsidy rates are

v
�
zJ
�
=

�
�
zJ
�
� 1

� (zJ)
, J 2 {H,F} ,

v
�
zB,i

�
=

�
�
zB,i

�
� 1

� (zB,i)
, i 2 {H,F} .

These optimal subsidies vary across states of the world if the elasticity of substitution is not

constant, and they vary in state B according to the source of the inputs embodied in the final

good.

We consider outcomes with µ� 0. Now, the market clearing conditions (12) to (14) must still

be satisfied, but (27) is replaced with

zB,H

zB,F
= � :=

qH
qF

. (33)

It follows that the functions zJ (µ), J 2 {H,F} are the same as before, but the functions zB,H (µ)

and zB,F (µ) are replaced by z̃B,F (µ) and z̃B,H (µ) ⌘ �z̃B,F (µ), where the latter functions are

obtained as solutions to (33) and (14). In what follows, we denote with a tilde any function that

arise when the consumption subsidies are in place, except for those functions—like zH(µ) and

zF (µ)—that do not change as a result of the subsidies.

With the consumption subsidies in place, firms’ operating profits in the various states are

⇡̃J(µ) :=
s
⇥
zJ (µ)

⇤

� [zJ (µ)]� 1
P̃ J
⇥
zJ (µ)

⇤1�"

, J 2 {H,F} , (34)

⇡̃B,i(µ) :=
s
⇥
z̃B,i (µ)

⇤

� [z̃B,i (µ)]� 1
P̃B(µ)1�", i 2 {H,F} , (35)
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where, using (5), the price indexes are

log P̃ J(µ) := log P̃ J
⇥
zJ (µ)

⇤
= CP + log

qJ
zJ (µ)

� nJ (µ)

Z
z̄

zJ (µ)

s (⇣)

⇣
d⇣, J 2 {H,F} , (36)

log P̃B(µ) = CP + log ÃB(µ)�
X

i=H,F

nB,i (µ)

Z
z̄

zB,i(µ)

s (⇣)

⇣
d⇣, (37)

and ÃB(µ) is obtained from

1 ⌘ nB,H (µ) s


qH

ÃB(µ)

�
+ nB,F (µ) s


qF

ÃB(µ)

�
.

Therefore,

ÃB(µ) ⌘ qF
z̃B,F (µ)

⌘ qF
z̃B,F (µ)

. (38)

Lump-sum taxes are levied in state J to finance the consumption subsidies paid in that state.

Using the subsidy rates v (z) = [� (z)� 1] /� (z), the required taxes are

T̃H(µ) = � (µh + µb) ⇡̃
H(µ)⇢,

T̃F (µ) = � (µf + µb) ⇡̃
F (µ)⇢,

T̃B(µ) = � (µf + µb) ⇡̃
B,F (µ)⇢� [µh + µb (1� ⇢)] ⇡̃B,H(µ)⇢.

It follows that

X

J=H,F,B

�J T̃ J(µ) +
X

j=h,f,b

µj⇧̃j(µ) = � (µh + µf + 2µb) k.

The welfare function (11) therefore becomes

W̃ (µ) = Ȳ +
1

"� 1

X

J=H,F,B

�J P̃ J (µ)1�" � (µh + µf + 2µb) k. (39)

We next characterize the wedges that determine optimal supply chain policies. To this end, we

first derive the first-order conditions for the optimal allocation µo � 0, which are characterized by
dW̃ (µo)

dµj
= 0, j = h, f , where, for a general function G (µ), dG (µ) /dµj is the change in G (·) from

the variation dµj = �dµb > 0. Using the price indexes (36) and (37), together with (12), (13) and
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(38), we obtain

dW̃ (µo)

dµj

=�
X

J=H,F

�J P̃ J (µo)1�"

"Z
z̄

zJ (µ)

s (⇣)

⇣
d⇣

#
dnJ (µo)

dµj

� �BP̃B (µo)1�"

2

4d log Ã
B (µo)

dµj

+
X

i=H,F

nB,i (µo)
s
⇥
z̃B,i (µo)

⇤

z̃B,i (µo)

dz̃B,i (µo)

dµj

3

5

+ �BP̃B (µo)1�"
X

i=H,F

"Z
z̄

zB,i(µo)

s (⇣)

⇣
d⇣

#
dnB,i (µo)

dµj

+ k = 0,

for j 2 {h, f}. Note, however, that d log z̃B,F (µo) /dµj = d log z̃B,H (µo) /dµj . Then, using (14),

d log ÃB (µo)

dµj

+
X

i=H,F

nB,i (µ)
s
⇥
z̃B,i (µ)

⇤

z̃B,i (µ)

dz̃B,i (µo)

dµj

= �d log z̃B,F (µ)

dµj

2

41�
X

i=H,F

nB,i (µ) s
⇥
z̃B,i (µ)

⇤
3

5 = 0.

In other words,

d log P̃B (µ)

dµj

= �
X

i=H,F

"Z
z̄

z̃B,i(µ)

s (⇣)

⇣
d⇣

#
dnB,i (µo)

dµj

. (40)

The first-order conditions for the first-best allocation can therefore be written as

dW̃ (µo)

dµj

=�
X

J=H,F

�J P̃ J (µo)1�"

"Z
z̄

zJ (µ)

s (⇣)

⇣
d⇣

#
dnJ (µo)

dµj

+ �BP̃B (µo)1�"
X

i=H,F

"Z
z̄

z̃B,i(µo)

s (⇣)

⇣
d⇣

#
dnB,i (µo)

dµj

+ k = 0,

for j = h, f .

Next use nF (µ) = (1� µh) ⇢, nH (µ) = (1� µf ) ⇢, nB,F (µ) = (µf + µb) ⇢, and nB,H (µ) =

[µh + µb (1� ⇢)] ⇢ to obtain dnF (µ) /dµf = 0, dnF (µ) /dµh = �⇢, dnH (µ) /dµh = 0, dnH (µ) /dµf =

�⇢, dnB,F (µ) /dµf = 0, dnB,F (µ) /dµh = �⇢, dnB,H (µ) /dµf = � (1� ⇢) ⇢, dnB,H (µ) /dµh = ⇢2

for µ � 0. These expressions allow us to represent dW̃ (µo) /dµj = 0 for j 2 {h, f} as

k = �H P̃H (µo)1�"

"Z
z̄

zH(µo)

s (⇣)

⇣
d⇣

#
⇢+ �BP̃B (µo)1�"

"Z
z̄

z̃B,H(µo)

s (⇣)

⇣
d⇣

#
(1� ⇢) ⇢ (41)
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and

k = �F P̃F (µo)1�"

"Z
z̄

zF (µo)

s (⇣)

⇣
d⇣

#
⇢

+ �BP̃B (µo)1�"

"Z
z̄

z̃B,F (µo)

s (⇣)

⇣
d⇣ � ⇢

Z
z̄

z̃B,H(µo)

s (⇣)

⇣
d⇣

#
⇢. (42)

By definition,

wo

j := ⇧̃j (µ
o)� ⇧̃b (µ

o)� dW̃ (µo)

dµj

, j 2 {h, f}.

We therefore obtain

wo

f
= k � �H ⇡̃H (µo) ⇢� �B⇡̃B,H (µo) (1� ⇢) ⇢, (43)

and

wo

h
= k � �F ⇡̃F (µo) ⇢� �B

⇥
⇡̃B,F (µo)� ⇢⇡̃B,H (µo)

⇤
⇢. (44)

Next we use (34), (35) and (41) to derive

wo

f
= �H P̃H (µo)1�"�

⇥
z̃H (µo)

⇤
⇢+ �BP̃B (µo)1�"�

⇥
z̃B,H (µo)

⇤
(1� ⇢) ⇢, (45)

where

� (z) :=

Z
z̄

z

s (⇣)

⇣
d⇣ � s (z)

� (z)� 1
,

which is equation (17) in the main text. Moreover, using (34), (35) and (42), we obtain

wo

h
= �F P̃F (µo)1�"�

⇥
z̃F (µo)

⇤
⇢+ �BP̃B (µo)1�"�

⇥
z̃B,H (µo)

⇤
⇢ (1� ⇢) (46)

+�BP̃B (µo)1�"
�
�
⇥
z̃B,F (µo)

⇤
� �

⇥
z̃B,H (µo)

⇤ 
⇢,

which is equation (18) in the main text.

We now want to characterize the absolute and relative sign of these wedges. First, note that (25)

implies � (z) < 0 under Marshall’s Second Law of Demand. Therefore, wo

f
< 0. Second,

�0 (z) = �s (z)

z
� s0 (z)

� (z)� 1
+

s (z)

[� (z)� 1]2
�0 (z) =

s (z)

[� (z)� 1]2
�0 (z) > 0.

Since z̃B,H (µo) = �z̃B,F (µo) > z̃B,F (µo), this implies �
⇥
z̃B,F (µo)

⇤
� �

⇥
�z̃B,F (µo)

⇤
< 0 and,

therefore, wo

h
< 0. These findings are summarized in

Lemma 2 Let �0 (z) > 0 for z 2 (0, z̄). Then wo

j
< 0 for j 2 {h, f}.
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Now consider two special cases. In the limiting case of symmetric CES preferences, � is constant

and s (z) := ↵z1��, where ↵ > 0 is a constant. In this case � (z) = 0 for all z and thus wo

h
= wo

f
= 0.

That is, the optimal allocation is achieved with no government intervention in the formation of

supply chains; i.e., 'j = 0 for j 2 {h, f, b}.
In the case of symmetric translog preferences, s (z) := �✓ log z, where ✓ > 0 is a constant and

z 2 (0, 1). These preferences imply

Z 1

z

s (⇣)

⇣
d⇣ =

1

2

s (z)

� (z)� 1
.

The first-order conditions (41) and (42) become

2k = �H ⇡̃H (µo) ⇢+ �B⇡̃B,H (µo) (1� ⇢) ⇢,

2k = �F ⇡̃F (µo) ⇢+ �B
⇥
⇡̃B,F (µo)� ⇢⇡̃B,H (µo)

⇤
⇢.

Combining these with (43) and (44) yields

wo

f
= wo

h
= �k. (47)

That is, in the translog case, the optimal allocation is achieved by a policy that subsidizes fully

the cost of all investments in single-country supply chains, i.e., 'b = 0 and 'h = 'f = k.33 We

summarize these findings in

Lemma 3 (a) In the case of symmetric CES preferences, wo

j
= 0 for j 2 {h, f}, which implies

that 'j = 0 for j 2 {h, f, b} induces the optimal allocation. (b) In the case of symmetric translog

preferences wo

f
= wo

h
= �k, which implies that 'b = 0 and 'h = 'f = k induces the optimal

allocation.

Finally, consider the di↵erence in the absolute sizes of the wedges. Using (45) and (46), we have

|wo

h
|�
��wo

f

�� = �H P̃H (µo)1�"�
⇥
z̃H (µo)

⇤
⇢� �F P̃F (µo)1�"�

⇥
z̃F (µo)

⇤
⇢ (48)

+�BP̃B (µo)1�"
�
�
⇥
z̃B,H (µo)

⇤
� �

⇥
z̃B,F (µo)

⇤ 
⇢.

In the limit case qH & qF =: q, the last term on the right-hand side of this equation equals zero.

Moreover, the first-order conditions (41) and (42) imply

�H P̃H (µo)1�"

Z
z̄

zH(µo)

s (⇣)

⇣
d⇣ = �F P̃F (µo)1�"

Z
z̄

zF (µo)

s (⇣)

⇣
d⇣. (49)

33Alternatively, the planner can tax diversification with 'b = �k, while leaving 'h = 'f = 0.
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Therefore,

|wo

h
|�
��wo

f

�� = �H P̃H (µo)1�"
s
⇥
zH (µo)

⇤

� [zH (µo)]� 1
⇢� �F P̃F (µo)1�"

s
⇥
zF (µo)

⇤

� [zF (µo)]� 1
⇢.

Using (49), this di↵erence can be expressed as

|wo

h
|�
��wo

f

�� = ⇢�H P̃H (µo)1�"

⇢
s[zH(µo)]

�[zH(µo)]�1

�⇢
s[zF (µo)]

�[zF (µo)]�1

�

R
z̄

zF (µo)
s(⇣)
⇣
d⇣

�
 
⇥
zF (µo)

⇤
� 

⇥
zH (µo)

⇤ 
, (50)

where

 (z) :=

Z
z̄

z

s (⇣)

⇣
d⇣
. s (z)

� (z)� 1
.

We have established

Lemma 4 Let qH & qF . Then |wo

h
| > |wo

f
| if and only if  

⇥
zF (µo)

⇤
>  

⇥
zH (µo)

⇤
.

Next note from (36) that with equal costs in both countries, and nJ (µ) s
⇥
zJ (µ)

⇤
= 1,

log P̃ J (µ) = log P̌
⇥
zJ (µ)

⇤
,

where

log P̌ (z) := CP + log
q

z
� 1

s (z)

Z
z̄

z

s (⇣)

⇣
d⇣.

It follows that P̌ (z)
R
z̄

z

s(⇣)
⇣
d⇣ is a declining function of z. To see this, consider

d

dz
log

⇢
P̌ (z)1�"

Z
z̄

z

s (⇣)

⇣
d⇣

��
= � ("� 1)

s0 (z)

s (z)2

Z
z̄

z

s (⇣)

⇣
d⇣ � s (z)

z
R
z̄

z

s(⇣)
⇣
d⇣

.

We use
s0 (z)

s (z)
= �� (z)� 1

z

to obtain

d

dz
log

⇢
P̌ (z)1�"

Z
z̄

z

s (⇣)

⇣
d⇣

��
= ("� 1)

� (z)� 1

zs (z)

Z
z̄

z

s (⇣)

⇣
d⇣ � s (z)

z
R
z̄

z

s(⇣)
⇣
d⇣

.

Finally, from (25), we have Z
z̄

z

s (⇣)

⇣
d⇣ <

s (z)

� (z)� 1
,
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which implies

d

dz
log

⇢
P (z)1�"

Z
z̄

z

s (⇣)

⇣
d⇣

��
= ("� 1)

� (z)� 1

zs (z)

Z
z̄

z

s (⇣)

⇣
d⇣ � s (z)

z
R
z̄

z

s(⇣)
⇣
d⇣

< �� (z)� "

z
< 0.

Applied to (49), this result implies

zH (µo) > zF (µo) . (51)

Therefore |wo

h
| > |wo

f
| when  (z) is a decreasing function and |wo

h
| < |wo

f
| when  (z) is an

increasing function. We summarize this finding in

Lemma 5 Let qH & qF and �0 (z) > 0 for z 2 (0, z̄). If  0 (z) < 0 for all z 2 (0, z̄) , then

|wo

h
| >

���wo

f

��� and if  0 (z) > 0 for all z 2 (0, z̄) , then |wo

h
| <

���wo

f

���.

Section 4

We divide this section in two parts. First, we prove the theoretical foundation of Figure 2.

Then, we derive the second-best supply chain policy.

Let qF ⇡ qH and �F ⇡ �H so that both the home and the foreign country are symmetric. When

µµµ � 0, all strategies must yield equal expected profits, such that the following conditions must

hold jointly

⇧h(µh, µf , 1� µh � µf ) = ⇧f (µh, µf , 1� µh � µf ),

⇧h(µh, µf , 1� µh � µf ) = ⇧b(µh, µf , 1� µh � µf ),

⇧f (µh, µf , 1� µh � µf ) = ⇧b(µh, µf , 1� µh � µf ).

Using the expressions for expected profits (30) and (31), the first condition rewrites ⇡[zH(µh, µf , 1�
µh � µf ))] = ⇡[zF (µh, µf , 1 � µh � µf )], where the functiosn zH and zF solve, respectively,

s[zH(µµµ)]⇢(1 � µf ) = 1 and s[zF (µµµ)]⇢(1 � µh) = 1. That is, the functions zH and zF are iden-

tical. Together with the monotonicity of z ! ⇡(z), this implies that ⇧h(µµµ) = ⇧f (µµµ) if and only if

µh = µf .

Using (30) and (32), the second condition is

�⇡[zF (µh, µf , 1� µh � µf )]⇢+ �B⇡[zB(µh, µf , 1� µh � µf )](1� ⇢)⇢ = k.

The function zF and zB are given respectively by s[zF (µµµ)]⇢(1 � µh) = 1 and s[zB(µµµ)]⇢[1 + (1 �
⇢)(1 � µh � µf )] = 1, so that zF is solely a function of µh and zB is solely a function of µh + µf .
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Totally di↵erentiating the equality above thus yields

dµh

dµf

����
⇧h=⇧b

= �
�Bdµf

⇡[zB(µh, µf , 1� µh � µf )](1� ⇢)⇢

�dµh
⇡[zF (µh, µf , 1� µh � µf )]⇢+ �Bdµh

⇡[zB(µh, µf , 1� µh � µf )](1� ⇢)⇢
.

In the above expression, the notation dxf [g(x)] refers to the total derivative of f with respect to x,

dxf [g(x)] = f 0[g(x)]g0(x). Since zB only depends on µh + µf , we have that dµf⇡(zB) = dµh⇡(zB).

Furthermore, dµf⇡(zB) = dµh⇡(zB) > 0 and dµh⇡(zF ) > 0. Hence, it follows that the curve

⇧h = ⇧b slopes downward with a slope in (�1, 0). Finally, proceeding similarly with the third

condition returns

dµh

dµf

����
⇧f=⇧b

= �
�dµf

⇡[zH(µh, µf , 1� µh � µf )]⇢+ �Bdµf
⇡[zB(µh, µf , 1� µh � µf )](1� ⇢)⇢

�Bdµh
⇡[zB(µh, µf , 1� µh � µf )](1� ⇢)⇢

< �1.

These results explain the properties of Figure 2.

We now turn to deriving the general expressions for the wedges wf and wh in the constrained

optimum, when consumption subsidies are not feasible. We use (11) to calculate dW (µ) /dµj .

Evaluated at the constrained optimum µ⇤, where dW (µ⇤) /dµj = 0, we obtain

dW (µ⇤)

dµj

= ⇧j(µ
⇤)�⇧b(µ

⇤)+
X

i=h,f,b

µi

d⇧i(µ⇤)

dµj

�
X

J=H,F,B

�JP J(µ⇤)1�"
d logP J(µ⇤)

dµj

= 0, j 2 {h, f} .

Rearranging terms, and using the definition of the wedges in the constrained optimum, i.e., w⇤
j
=

⇧j(µ⇤) � ⇧b(µ⇤), yields (19) in the main text. Next, from the expressions for expected profits,

(30)-(32), we have

d⇧h(µ⇤)

dµh

= �B⇢
d⇡B,H(µ⇤)

dµh

,

d⇧h(µ⇤)

dµf

= �H⇢
@⇡
⇥
zH (µ⇤)

⇤

@z

@zH (µ⇤)

@µf

+ �B⇢
d⇡B,H(µ⇤)

dµf

,

d⇧f (µ⇤)

dµf

= �B⇢
d⇡B,F (µ⇤)

dµf

,

d⇧f (µ⇤)

dµh

= �F⇢
@⇡
⇥
zF (µ⇤)

⇤

@z

dzF (µ⇤)

dµf

+ �B⇢
d⇡B,F (µ⇤)

dµh

,

d⇧b(µ⇤)

dµh

= �F⇢
@⇡
⇥
zF (µ⇤) , qF

⇤

@z

dzF (µ⇤)

dµh

+ �B

⇢
d⇡B,F (µ⇤)

dµh

+ ⇢(1� ⇢)
d⇡B,H(µ⇤)

dµh

�
,

d⇧b(µ⇤)

dµf

= �H⇢
@⇡
⇥
zH (µ⇤) , qH

⇤

@z

dzH (µ⇤)

dµf

+ �B

⇢
d⇡B,F (µ⇤)

dµf

+ ⇢(1� ⇢)
d⇡B,H(µ⇤)

dµf

�
.
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Substituting these derivatives into the expression for the wedges (19), we obtain

w⇤
j = ��K

⇢
1

�[zK(µµµ⇤)]

@ log ⇡K [zK(µ⇤)]

@z
� @ logPK [zK(µ⇤)]

@z

�
PK [zK(µ⇤)]1�"

dzK(µ⇤)

dµj

� �B
(
X

K

nB,K(µµµ⇤)s[zB,K(µµµ⇤)]

�[zB,K(µµµ⇤)]

d log ⇡B,K(µµµ⇤)

dµj

� d logPB (µ⇤)

dµj

)
PB(µ⇤)1�", (52)

where K = F if j = h and K = H if j = f . The first term on the right-hand side of (52)

represents the net externality in state K, i.e., the business-stealing externality combined with the

consumer-surplus externality. The second term represents the net externality in state B.

To compute these wedges, we need explicit expressions for the partial derivatives in (52). First

note that the expressions for the semi-elasticities of the price index and profits in state K 2 {H,F}
are given by (23) and (24), respectively. For state B, di↵erentiate the expression for relative prices

(27) to obtain

d log zB,H(µµµ)

dµj

.d log zB,F (µµµ)

dµj

=

⇢
1� zB,F (µµµ)

@ log ⌘[zB,F (µµµ)]

@z

�.⇢
1� zB,H(µµµ)

@ log ⌘[zB,H(µµµ)]

@z

�
,

where ⌘(z) := �(z)/(�(z)� 1) is the markup factor. Together with condition (14), we obtain

d log zB,K(µµµ)

dµh

= � ⇢s[zB,F (µµµ)]� ⇢2s[zB,H(µµµ)]

�(µµµ)
n
1� zB,K(µµµ)@ log ⌘[zB,K(µµµ)]

@z

o , K 2 {H,F} (53)

and
d log zB,K(µµµ)

dµf

= � ⇢(1� ⇢)s[zB,H(µµµ)]

�(µµµ)
n
1� zB,K(µµµ)@ log ⌘[zB,K(µµµ)]

@z

o , K 2 {H,F} , (54)

where

�(µµµ) :=
X

L=H,F

nB,L(µµµ)s
⇥
zB,L(µµµ)

⇤
(

�[zB,L(µµµ)]� 1

1� zB,L(µµµ)@ log ⌘[zB,L(µµµ)]
@z

)
.

Di↵erentiating the price index in state B, (28), we obtain

d logPB(µµµ)

dµh

=
d log zB,H(µµµ)

dµh

@ log ⌘[zB,H(µµµ)]

@ log z

+ nB,F (µµµ)s[zB,F (µµµ)]


d log zB,F (µµµ)

dµh

� d log zB,H(µµµ)

dµh

�

+ ⇢

"Z
z
B,H(µµµ)

zB,F (µµµ)

s(⇣)

⇣
d⇣ + (1� ⇢)

Z
z̄

zB,H(µµµ)

s(⇣)

⇣
d⇣

#
, (55)
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and

d logPB(µµµ)

dµf

=
d log zB,F (µµµ)

dµf

@ log ⌘[zB,F (µµµ)]

@ log z

+ nB,H(µµµ)s[zB,H(µµµ)]


d log zB,H(µµµ)

dµf

� d log zB,F (µµµ)

dµf

�

+ ⇢(1� ⇢)

Z
z̄

zB,H(µµµ)

s(⇣)

⇣
d⇣. (56)

Finally, the change in profits is given by

d log ⇡B,K(µµµ)

dµj

= �
✓
�[zB,K(µµµ)]� 1 +

@ log �[zB,K(µµµ)]

@ log z

◆
d log zB,K(µµµ)

dµj

�("� 1)
d logPB(µµµ)

dµj

, j 2 {h, f}, K 2 {H,F}. (57)

To better understand these expressions, we consider the symmetric limiting case where qH ⇡
qF = q and �H ⇡ �F = �. In this setting, �F ⇡ �H = �, and zB,F (µµµ) ⇡ zB,H(µµµ) =: zB(µµµ). As a

result, the expression for the wedge (52) becomes

w⇤
j = ��

(
@ log ⇡[zK(µµµ⇤)]

@z

� [z (µ⇤)]
� @ logP [zK(µµµ⇤)]

@z

)
P [zK(µµµ⇤)]1�"

dzK(µµµ⇤)

dµj

� �B
(

@ log ⇡[zB(µµµ⇤),q]
@z

� [zB (µ⇤)]
� @ logP [zB(µµµ⇤)]

@z

)
P [zB(µµµ⇤)]1�"

dzB(µµµ⇤)

dµj

. (58)

The term @ logP/@z represents the consumer-surplus externality, whereas the term (@ log ⇡/@z) /�

represents the business-stealing externality.

Before considering the signs of the wedges, we need to show that µ⇤
h
= µ⇤

f
. Recall that the

necessary first-order conditions for an interior allocation are

Wj(µµµ
⇤) = ⇧j(µµµ

⇤)�⇧b(µµµ
⇤)� w⇤

j = 0, j = h, f.

For these two necessary conditions to hold jointly, it must be that

⇧h(µµµ
⇤)� w⇤

h
= ⇧f (µµµ

⇤)� w⇤
f
.

Using (58) and the expressions for expected profits, we find that this equality indeed holds when

µ⇤
h
= µ⇤

f
. This allocation corresponds to the unique optimal constrained allocation if W is globally

concave. Proving the global concavity of W for general HSA preferences turns out to be a tricky

task. Instead, we now show that µ⇤
h
= µ⇤

f
is an optimum when preferences are symmetric translog.

Additionally, we prove at the end of this Section that W is indeed globally concave when preferences

are CES.
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To prove that µ⇤
h
= µ⇤

f
is an optimum when preferences are symmetric translog, we show that

increasing µf is welfare-improving if and only if µf < µh. Specifically, we consider the variation

dµ = (dµh, dµf , 0) with dµh = �dµf . Totally di↵erentiating the welfare function (11) and imposing

dµh � dµf returns

dW (µµµ)

dµf

/ @⌦(µh)

@µh

�
@⌦(µf )

@µf

,

where

⌦(µ) := �
✓
n(µ)⇡[z(µ)] +

1

"� 1
P [z(µ)]1�"

◆
,

and n(µ) = ⇢(1 � µ), the function z solves s[z(µ)]n(µ) = 1, P is given by (21) and ⇡(z) by (22).

When preferences are symmetric translog, s(z) = �✓ log(z), and the function ⌦ becomes34

⌦(µ) / �
✓

1

1 + ✓n(µ)
+

1

"� 1

◆✓
1 + ✓n(µ)

✓n(µ)

◆1�"

exp

✓
1� "

2✓n(µ)

◆
.

The function ⌦ is convex as long as �(µ) = 1 + ✓n(µ) > ", which holds through Assumption 2.

Hence, @µ⌦(µ) is increasing, and dµf
W (µµµ) > 0 () @µh

⌦(µh) > @µf
⌦(µf ) () µh > µf .

With these results in mind, we turn to signing the wedges. Since µ⇤
h
= µ⇤

f
=: µ⇤, the wedges for

the two sole-sourcing strategies are equal, i.e., w⇤
h
= w⇤

f
=: w⇤. Furthermore, from (58), we have

w⇤ > 0 if
@ log ⇡(z)

@z
> �(z)

@ logP (z)

@z
for z 2 {zK(µ⇤), zB(µ⇤)},

and

w? < 0 if
@ log ⇡(z)

@z
< �(z)

@ logP (z)

@z
for z 2 {zK(µ⇤), zB(µ⇤)},

which follows from the fact that zK and zB are decreasing in µj . General HSA preferences do not

yield simple parametric conditions that satisfy these inequalities. But we can gain further insight

by considering the special cases of CES preferences and translog preferences.

First, with symmetric CES preferences, s(z) = ↵z1�� and �(z) = � is a constant. Using (23)

with this market-share function, the consumer-surplus externality becomes

@ logP (z)

@z
=

s0(z)

s(z)

1

� � 1
< 0.

Next, using (24), the business-stealing externality simplifies to

@ log ⇡(z)

@z
=

s0(z)

s(z)

� � "

� � 1
< 0.

34Recall that under symmetric translog preferences, the elasticity of substitution is �(z) = 1�1/ log(z), the market
clearing condition implies log z(µ) = �1/[✓⇢(1� µ)], and finally [1/s(z)]

R 1

z
s(⇣)/⇣d⇣ = � log(z)/2.
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Together they imply

@ log ⇡(z)

@z
� �

@ logP (z)

@z
= �s0(z)

s(z)

"

� � 1
> 0 for all z.

We have established

Lemma 6 Let qH & qF , �H & �F , and let consumers hold symmetric CES preferences. Then,

w⇤
h
= w⇤

f
> 0.

Turning to symmetric translog preferences, let s(z) = �✓ log(z) for z 2 (0, 1). Now (23) implies

@ logP (z)

@ log z
=

1

log z � 1
� 1

2

while (24) implies

@ log ⇡(z)

@ log z
=

✓
1� 1

log z
� "

◆✓
1

log z � 1
� 1

2

◆
+

1

2 log z
.

Together, these two expressions imply

@ log ⇡(z)

@ log z
� �(z)

@ logP (z)

@ log z
= "+

1

log z

log z � 1

log z � 3
.

Under symmetric translog preferences, the adding up constraints of market shares generate relative

prices log zJ(µ) = �1/[✓n(µ)] for nJ (µ) = n (µ) := ⇢ (1� µ), J 2 {H,F}, and log zB(µ) =

�1/[✓nB(µ)] for nB(µ) := ⇢ [1 + (1� ⇢) (1� 2µ)]. It follows that

@ log ⇡[z(µ⇤)]

@z
> �[z(µ⇤)]

@ logP [z(µ⇤)]

@z
() " > ✓nK(µ⇤)

1 + ✓nK(µ⇤)

1 + 3✓nK(µ⇤)
, K 2 {H,F,B} .

Finally, we note that nB(µ) > n(µ) for µ < 1/2, and that the product x(1+x)/(1+3x) is increasing

in x. We conclude that

" < ✓n(µ⇤)
1 + ✓n(µ⇤)

1 + 3✓n(µ⇤)
=) w⇤ < 0,

and

" > ✓nB(µ⇤)
1 + ✓nB(µ⇤)

1 + 3✓nB(µ⇤)
=) w⇤ > 0.

Although the values of n(µ⇤) and nB(µ⇤) are endogenous, it is possible to derive parametric

restrictions that guarantee that one or the other of these inequalities holds. Specifically, if " <

✓n(µ⇤) 1+✓n(µ⇤)
1+3✓n(µ⇤) holds for the smallest possible value of n, then it must hold for all n. Therefore w⇤ <

0 if " < ✓⇢(2+✓⇢)/2(2+3✓⇢). Similarly, if " > ✓nB(µ⇤) 1+✓n
B(µ⇤)

1+3✓nB(µ⇤)
holds for the largest possible value

of nB, then it must hold for all n. Therefore w⇤ > 0 if " > ✓⇢(2�⇢)[1+✓⇢(2�⇢))/(1+3✓⇢(2�⇢)].35

35Technically, we also need to ensure that min{�[z(µ⇤)],�[zB(µ⇤)]} = �[z(µ⇤)] = 1 + ✓n(µ⇤) > ". This is not a
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Lemma 7 Let qH & qF , �H & �F and suppose that consumers have symmetric translog prefer-

ences. Then

" <
✓⇢(2 + ✓⇢)

2(2 + 3✓⇢)
=) w⇤ < 0,

and

" >
✓⇢(2� ⇢) [1 + ✓⇢(2� ⇢)]

1 + 3✓⇢(2� ⇢)
=) w⇤ > 0.

To conclude this section, we return to the special case of CES preferences to show that Lemma 6

generalizes to settings with asymmetric costs and risks. Returning to (52), we have already shown

that the first term in parenthesis is negative. In state B, constant mark-ups simplify equations (53)

and (54) to
d log zB,K

dµh

= �
⇢
�
s[zB,F (µµµ⇤)]� ⇢s[zB,H(µµµ⇤)]

 

� � 1
< 0, K 2 {H,F},

and
d log zB,K

dµf

= �⇢(1� ⇢)s[zB,H(µµµ⇤)]

� � 1
< 0, K 2 {H,F}.

Furthermore, the semi-elasticity of the price index (55) and (56) becomes

d logPB(µµµ⇤)

dµj

= �d log zB,H(µµµ⇤)

dµj

= �d log zB,F (µµµ⇤)

dµj

> 0, j 2 {h, f} .

Similarly, the semi-elasticity of profits (57) becomes

d log ⇡B,K(µµµ⇤)

dµj

= �(� � ")
d log zB,F (µµµ⇤)

dµj

= �(� � ")
d log zB,H(µµµ⇤)

dµj

> 0, j 2 {h, f} .

Combining these expressions, the second term in (52) becomes

X

K=H,f

nB,K(µµµ⇤)s[zB,K(µµµ⇤)]

�

d log ⇡B,K(µµµ⇤)

dµj

� d logPB(µµµ⇤)

dµj

=
"

�

d log zB,K(µµµ⇤)

dµj

< 0, j 2 {h, f} and K 2 {H,F} .

Then (52) implies

w⇤
h
= ⇢

✓
"

� � 1

◆�
�F⇡[zF (µµµ⇤)] + �B

�
⇡[zB,F (µµµ⇤)]� ⇢⇡[zB,H(µµµ⇤)]

 �
,

w⇤
f
= ⇢

✓
"

� � 1

◆�
�H⇡[zH(µµµ⇤)] + �B(1� ⇢)⇡[zB,H(µµµ⇤)]

 
.

Together with the planner’s first-order conditions, these expressions yield

concern for the su�cient condition " < ✓n(µ⇤) 1+✓n(µ⇤)
1+3✓n(µ⇤) . Regarding " > ✓n

B(µ⇤) 1+✓n
B(µ⇤)

1+3✓nB(µ⇤) , a su�cient condition

for �[z(µ⇤)] > " for all µ? is 1 + ✓n(1/2) = 1 + ✓⇢/2 > " since n is decreasing in µ.
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Lemma 8 Suppose consumers have symmetric CES preferences. Then

w⇤
h
= w⇤

f
=

✓
"

� + "� 1

◆
k > 0.

Evidently, in the CES case, the two wedges are positive and equal to one another, which implies

that the constrained optimum can be achieved with a subsidy for diversification, i.e., 'b > 0, with

'h = 'f = 0.

Finally, we conclude this section by showing that the first order conditions are necessary and

su�cient when preferences are CES – that is, that the welfare function W is globally concave.

When preferences are symmetric CES, the price index (21) in state J 2 {H,F} simplifies to

P [zJ(µµµ), qJ ] =
qJ

zJ(µµµ)
= nJ(µµµ)

1
1�� · qJ , (59)

while the price index in state B becomes

PB(µµµ) =

0

@
X

J=H,F

nB,J(µµµ)q1��

J

1

A

1
1��

. (60)

Additionally, the profit of an active firm in state J 2 {H,F} is

⇡[zJ(µµµ), qJ ] =

 
q1�"

J

�

!
nJ(µµµ)

"��

��1 .

and the profit of an active firm in state B purchasing an input from country J 2 {H,F} is

⇡B,J(µµµ) =

 
q1��

J

�

!0

@
X

`=H,F

nB,`(µµµ)q1��

`

1

A

"��

��1

.

Under this special functional form, when the allocation is interior, µf > 0, µh > 0 and µb =

1� µf � µh > 0, the welfare function then simplifies to

W (µh, µf ) = c
X

J=H,F,B

�JP J(µµµ)1�" � k(2� µh � µf ),

where c := 1/�+1/("� 1). Plugging in the expression for the price indices, (59) and (60), we have

W (µh, µf ) = c

2

64
X

J=H,F

�JnJ(µµµ)
1�"

1�� q1�"

J
+ �B

0

@
X

`=H,F

nB,`(µµµ)q1��

`

1

A

1�"

1��

3

75� k(2� µh � µf ).
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Double di↵erentiating W , we obtain that the elements of the Hessian matrix are

@2W (µh, µf )

@(µf )2
/ �

⇣
�HnH(µµµ)

"��

��1�1q1�"

H
+ �B(1� ⇢)2q2(1��)

H
PB(µµµ)2��1�"

⌘
< 0,

@2W (µh, µf )

@(µh)2
/ �

⇣
�FnF (µµµ)

"��

��1�1q1�"

F
+ �B

⇥
q1��

F
� ⇢q1��

H

⇤2
PB(µµµ)2��1�"

⌘
< 0,

@2W (µh, µf )

@µf@µh

/ ��B(1� ⇢)q1��

H

⇥
(q1��

F
� ⇢q1��

H

⇤
PB(µµµ)2��1�" < 0,

where the constant of proportionality is the same. Inspection of the Hessian matrix shows that W

is globally concave.

Section 5

In this section, we extend the numerical results of Section 6 in the main text to include simu-

lations with both asymmetric risks and costs. Figure 6 extends the comparative statics of panels

(c) and (d) in Figure 4 by comparing the e↵ect of cross-country di↵erences in risk on the optimal

supply-chain policies under two di↵erent cost discounts.36 Panels (a) and (b) in Figure 6 depict,

respectively, the fraction of firms that adopt a particular supply chain strategy and the optimal

policy under the symmetric cost simulation of Figure 4. Panels (c) and (d) plot the same variables

for a positive cost discount of 5%.

When the cost discount is large but the risk premium is minimal, o↵shoring is ceteris paribus

more profitable than onshoring, and firms locate their supply chains disproportionately in the

foreign country, both in the equilibrium and in the constrained optimum. The wedges remain

positive for both strategies, although they are no longer equal. Indeed, as discussed in Section 5,

when risks are identical across countries but the input cost is lower in the foreign country, the social

planner wants to tax relatively more the exclusive o↵shore relationships as the price index is lower

in state F .

As in the case with symmetric costs depicted in Figure 4, when the cost di↵erential is positive,

an increase in the risk premium is associated with a greater fraction of diversified firms, a greater

fraction of firms that form relationships only onshore, and a smaller fraction of firms that form

relationships only abroad. However, in this case, firms face a tension between safe-but-expensive and

riskier-but-cheaper suppliers. In panel (c), we see that for risk di↵erentials greater than 10%, a cost

discount of 5% is no longer enough to favor o↵shore investments, and firms locate disproportionately

their supply chains in the safe-but-expensive home country.

Qualitatively, the e↵ect of an increase in the risk premium on the optimal policies when the

cost di↵erential is positive also mimics what we have seen for symmetric costs. As the foreign risk

increases, relatively more firms locate their supply chains exclusively in the home country, which

triggers a relative increase in the price index in state F compared to state H, and with it an increase

36The e↵ect of a positive cost di↵erential on the comparative statics for the risk premium is qualitatively similar
for the cases of " = 1.2 and " = 1.7. To conserve space, we present only the latter.
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(a) Investment strategy: zero cost discount
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(c) Investment strategy: positive cost discount
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(d) Optimal policy: positive cost discount
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Figure 6: Second-Best Policies: Risk Di↵erences Across Locations with Two Cost Scenarios

Note: Baseline simulation is " = 1.7, �H = �F = 0.9, qH = qF = 0.1, ✓ = 8.0, and ⇢ = 0.7. Fixed cost chosen so
that min(µ?

b , µ
o

b) ⇡ 0 in the baseline symmetric simulation. This yields k = 0.37. The risk premium is computed as
�(�F � �H)/�H , where we keep �H constant at its baseline value. The cost discount in panels (b) and (d) is 5%.

in w⇤
h
but a decrease in w⇤

f
. Compared with the symmetric cost simulation, the di↵erence is now

that the price index was initially lower in state F relative to state H due to the lower input cost

in the foreign country. Thus, an increase in foreign risk initially shrinks the market’s misallocation

between home sourcing and foreign sourcing, and the wedges converge for a risk premium of 5%.

Then, as the risk premium continues to grow, the price index in state F continues to increase,

and the planner wants to tax relatively more the exclusive onshore relationships. Finally, for a

su�ciently large risk premium, the planner’s desire to shift the location of exclusive-sourcing from

the home country to the foreign country implies again a tax on onshore relationships but a subsidy

for investing in a single relationship abroad.

Figure 7 extends the comparative statics of panels (c) and (d) in Figure 5 by allowing for a

positive risk premium. Panel (a) and (b) reproduce the results illustrated in panels (c) and (d)

of the earlier figure, where �H = �F , while panels (c) and (d) in Figure 7 depict outcomes and

policies with a positive risk premium of 15%.37 When the cost discount is small relative to the

risk premium, onshore sourcing relationships are relatively more attractive and a larger fraction of

firms opt for strategy h. As the cost discount grows, the relative advantage of the foreign country

37Once again the qualitative properties of the figure are similar for " = 1.2 and " = 1.7, so we present only the
latter.
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(a) Investment strategy: zero risk premium
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(c) Investment strategy: positive risk premium
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(b) Optimal policy: zero risk premium
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(d) Optimal policy: positive risk premium
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Figure 7: Second-Best Policies: Cost Di↵erences Across Locations with Two Risk Scenarios

Note: Baseline simulation is " = 1.7, �H = �F = 0.9, qH = qF = 0.1, ✓ = 8.0, and ⇢ = 0.7. Fixed cost chosen so
that min(µ?

b , µ
o

b) ⇡ 0 in the baseline symmetric simulation. This yields k = 0.37. The cost discount is computed as
�(qF � qH)/qH , where we keep qH constant at its baseline value. The risk premium in panels (b) and (d) is 15%.

increases, and a larger fraction of firms decide to form their exclusive relationship with foreign

suppliers. This intuitive pattern mimics the findings for the case where risks are symmetric.

Regarding the optimal policies, the wedge for strategy f is relatively smaller than that for

strategy h when the cost discount is relatively small. This echoes the discussion of Figure 4; when

the risk premium is large but the cost discount is small, the monopoly distortion is more severe

in state F when the price index is higher, and the planner wishes to combat the higher prices in

this state with a policy that tilts sourcing towards the foreign country. As the cost discount grows

further, the fraction of firms that form exclusive relationships with foreign supplier rises, which,

as in the scenario with symmetric risks, reduces the social benefit from promoting consumption in

state F , and thus the gap between w⇤
f
and w⇤

h
.

We have explored a large variety of parameters besides those illustrated here. In general, the

optimal policies hinge on which country is more attractive for exclusive sourcing based on the

tradeo↵ between risk and cost and the implications of these asymmetric investments on the sizes

of the monopoly distortions in the various states of the world.
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